Symbolic Model Checking of Hybrid Systems Using Template Polyhedra
نویسندگان
چکیده
We propose techniques for the verification of hybrid systems using template polyhedra, i.e., polyhedra whose inequalities have fixed expressions but with varying constant terms. Given a hybrid system description and a set of template linear expressions as inputs, our technique constructs over-approximations of the reachable states using template polyhedra. Therefore, operations used in symbolic model checking such as intersection, union and post-condition across discrete transitions over template polyhedra can be computed efficiently using template polyhedra without requiring expensive vertex enumeration. Additionally, the verification of hybrid systems requires techniques to handle the continuous dynamics inside discrete modes. We propose a new flowpipe construction algorithm using template polyhedra. Our technique uses higher-order Taylor series expansion to approximate the time trajectories. The terms occurring in the Taylor series expansion are bounded using repeated optimization queries. The location invariant is used to enclose the remainder term of the Taylor series, and thus truncate the expansion. Finally, we have implemented our technique as a part of the tool TimePass for the analysis of affine hybrid automata.
منابع مشابه
A Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملAlgorithmic Algebraic Model Checking III: Approximate Methods
We present computationally efficient techniques for approximate model-checking using bisimulation-partitioning, polyhedra, grids and time discretization for semialgebraic hybrid systems, and demonstrate how they relate to and extend other existing techniques.
متن کاملTheoretical Computer Science The Algorithmic Analysis of Hybrid Systems
We present a general framework for the formal speci cation and algorithmic analysis of hybrid systems A hybrid system consists of a discrete program with an analog environment We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamical laws For veri cation purposes we restrict ourselves to linear hybrid systems where all variables f...
متن کاملThe Algorithmic Analysis of Hybrid Systems
We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as finite automata equipped with variables that evolve continuously with time according to dynamical laws. For verification purposes, we restrict ourselves to linear hybrid systems, where all va...
متن کاملTemplate-Based Unbounded Time Verification of Affine Hybrid Automata
Computing over-approximations of all possible time trajectories is an important task in the analysis of hybrid systems. Sankaranarayanan et al. [20] suggested to approximate the set of reachable states using template polyhedra. In the present paper, we use a max-strategy improvement algorithm for computing an abstract semantics for affine hybrid automata that is based on template polyhedra and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008